

Page 1 of 2

S
R
12

3
0

Rotary Encoder
How Encoders work
Rotary encoders detect a change in rotation, and as such cannot be used for detecting a
“set” position. That is, each time you restart your arduino project, the encoder is set at 0,
no matter how many times you’ve turned it previously.

This is different to a potentiometer, which will retain the same value when you reset your
project. The benefit to this is that the rotary encoder can have an infinite number of turns
and works well for adaptive controls such as menu items or code where you want to
control many different values from the same knob.

Most encoders work on the same premise. There’s 3 main connections of concern,
which would be labelled A, B, and Common or C The task of the microcontroller is to
track the changes between A and B to record which way the encoder is turning and how
many “clicks.”

Starting from phase 1, if we turn right one click, we see that B raises high, another click
then rises A to high, then B low, and finally A low, which returns us back to phase 1. In
the reverse, A goes high first, rather than B. so we can see what changes first and which
way the encoder is turning. In this example, C is connected to ground.

Software implementation
It might sound tricky, but it’s easy enough to do in software. We can use “pin change
interrupts” to let the UNO count and keep track of the turning. (for other devices, look at
pin-change interrupts or events for your chosen controller).

(Note, for UNO boards, pin change interrupts can only be on pins 2 and 3)

Page 2 of 2

S
R
12

3
0

Rotary Encoder
 Connection between the encoder and the Arduino is suggested below.

Note: We recommend 100-200nF capacitors connected between A/B lines to C. You will
get unreliable and erratic behaviour without these capacitors.

Each “notch” that you can feel corresponds with one whole phase change, from 1 to 4.
To track this, we can look at just the falling edge of one of the pins, and check to see if
the other pin matches. Try the below code (swap enc_a and enc_b if it’s not quite as
expected)

We must use volatile int and digitalPinToInterrupt() in order to use interrupt
functions; if you would like to read more, check out:

https://www.arduino.cc/reference/en/language/functions/external-
interrupts/attachinterrupt/

#define enc_a 2
#define enc_b 3

volatile int encoderValue = 0;

void setup() {
 Serial.begin(9600);
 pinMode(enc_a, INPUT_PULLUP);
 pinMode(enc_b, INPUT_PULLUP);
 attachInterrupt(digitalPinToInterrupt(enc_a), encoder, FALLING);
}

void loop() {
 Serial.println(encoderValue);
 delay(100);
}

void encoder() {
 if (digitalRead(enc_a) == digitalRead(enc_b)) {
 encoderValue++;
 }
 else {
 encoderValue--;
 }
}

