Electus Distribution NA1000 Electronic Freeze Spray Electus Distribution

Chemwatch Hazard Alert Code: 1

Issue Date: **15/04/2021** Print Date: **12/07/2022** L.GHS.AUS.EN

Chemwatch: 22-0868
Version No: 5.1
Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier		
Product name	Product name Electus Distribution NA1000 Electronic Freeze Spray	
Chemical Name	Not Applicable	
Synonyms	dust remover tetrafluoroethane 1,1,1,2-tetrafluoroethane.; R 134A Fluorocarbon 134a HFC 134a HFA 134a.	
Proper shipping name	AEROSOLS	
Chemical formula	Not Applicable	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Used to freeze electronic parts.
	Application is by spray atomisation from a hand held aerosol pack

Details of the supplier of the safety data sheet

	•
Registered company name	Electus Distribution
Address	320 Victoria Road Rydalmere NSW 2116 Australia
Telephone	+61 1300 738 555 +61 2 8832 3200
Fax	+61 1300 738 500
Website	http://www.electusdistribution.com.au/
Email	sales@electusdistribution.com.au

Emergency telephone number

-		
Association / Organisation	Electus Distribution	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	+61 2 45774866 (George Jones)	+61 1800 951 288
Other emergency telephone numbers	Not Available	+61 3 9573 3188

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable	
Classification [1]	Aerosols Category 3	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Label elements	
Hazard pictogram(s)	Not Applicable
Signal word	Warning

Hazard statement(s)

AUH044	Risk of explosion if heated under confinement.
H229	Pressurised container: May burst if heated.
AUH018	In use, may form flammable/explosive vapour/air mixture.

Precautionary statement(s) Prevention

· · · · · · · · · · · · · · · · · · ·	
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P251	Do not pierce or burn, even after use.

Chemwatch: 22-0868 Page 2 of 10 Version No: 5.1

Electus Distribution NA1000 Electronic Freeze Spray

Issue Date: 15/04/2021 Print Date: 12/07/2022

Not Applicable

Precautionary statement(s) Storage

P410+P412 Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.

Precautionary statement(s) Disposal

Not Applicable Not Applicable

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
811-97-2	>60	1.1.1.2-tetrafluoroethane
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

Description of first aid measures

•	
Eye Contact	If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation.
If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid proce If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitation mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.	
Ingestion	 Not considered a normal route of entry. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

for intoxication due to Freons/ Halons;

A: Emergency and Supportive Measures

- Maintain an open airway and assist ventilation if necessary
- Treat coma and arrhythmias if they occur. Avoid (adrenaline) epinephrine or other sympathomimetic amines that may precipitate ventricular arrhythmias. Tachyarrhythmias caused by increased myocardial sensitisation may be treated with propranolol, 1-2 mg IV or esmolol 25-100 microgm/kg/min IV.
- ▶ Monitor the ECG for 4-6 hours
- B: Specific drugs and antidotes:
- ► There is no specific antidote

C: Decontamination

- Inhalation; remove victim from exposure, and give supplemental oxygen if available.
- Ingestion; (a) Prehospital: Administer activated charcoal, if available. DO NOT induce vomiting because of rapid absorption and the risk of abrupt onset CNS depression. (b) Hospital: Administer activated charcoal, although the efficacy of charcoal is unknown. Perform gastric lavage only if the ingestion was very large and recent (less than 30 minutes)

D: Enhanced elimination:

- ▶ There is no documented efficacy for diuresis, haemodialysis, haemoperfusion, or repeat-dose charcoal.
- POISONING and DRUG OVERDOSE, Californian Poison Control System Ed. Kent R Olson; 3rd Edition
- ▶ Do not administer sympathomimetic drugs unless absolutely necessary as material may increase myocardial irritability.
- ► No specific antidote.
- Because rapid absorption may occur through lungs if aspirated and cause systematic effects, the decision of whether to induce vomiting or not should be made by an attending physician.
- If lavage is performed, suggest endotracheal and/or esophageal control.
- Danger from lung aspiration must be weighed against toxicity when considering emptying the stomach.
- ▶ Treatment based on judgment of the physician in response to reactions of the patient

Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

Chemwatch: 22-0868 Page 3 of 10 Version No: 5.1

Electus Distribution NA1000 Electronic Freeze Spray

Issue Date: 15/04/2021 Print Date: 12/07/2022

SMALL FIRE: Use extinguishing agent suitable for type of surrounding fire.

LARGE FIRE: Cool cylinder.

DO NOT direct water at source of leak or venting safety devices as icing may occur.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result		
dvice for firefighters			
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 		
Fire/Explosion Hazard	WARNING: In use may form flammable/ explosive vapour-air mixtures. Non combustible. Not considered to be a significant fire risk. Heating may cause expansion or decomposition leading to violent rupture of containers. Aerosol cans may explode on exposure to naked flames. Rupturing containers may rocket and scatter burning materials. Hazards may not be restricted to pressure effects. May emit acrid, poisonous or corrosive fumes. Decomposes on heating and may emit toxic fumes of carbon monoxide (CO). Decomposition may produce toxic fumes of: carbon monoxide (CO) Combustion products include: carbon dioxide (CO2) hydrogen fluoride other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.		

SECTION 6 Accidental release measures

HAZCHEM

Personal precautions, protective equipment and emergency procedures

Not Applicable

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. Collect residues and seal in labelled drums for disposal.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

۰	Avoid all persona	I contact,	including	inhalation.
	144	Land Const.		

Wear protective clothing when risk of exposure occurs.

► Use in a well-ventilated area.

Prevent concentration in hollows and sumps.

Safe handling

- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- ▶ When handling, **DO NOT** eat, drink or smoke. ► DO NOT incinerate or puncture aerosol cans.

Electus Distribution NA1000 Electronic Freeze Spray

Print Date: 12/07/2022

- ► DO NOT spray directly on humans, exposed food or food utensils.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

▶ Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can

Conditions for safe storage, including any incompatibilities

Suitable container

- DO NOT use aluminium or galvanised containers
- Aerosol dispenser.
- ▶ Check that containers are clearly labelled.

As a general rule, hydrofluorocarbons tend to be flammable unless they contain more fluorine atoms than hydrogen atoms. Haloalkanes:

- are highly reactive; some of the more lightly substituted lower members are highly flammable; the more highly substituted may be used as fire suppressants, not always with the anticipated results.
- may react with the lighter divalent metals to produce more reactive compounds analogous to Grignard reagents.
- may produce explosive compounds following prolonged contact with metallic or other azides
- may react on contact with potassium or its alloys although apparently stable on contact with a wide rage of halocarbons, reaction products may be shock-sensitive and may explode with great violence on light impact; severity generally increases with the degree of halocarbon substitution and potassium-sodium alloys give extremely sensitive mixtures .

Storage incompatibility

BRETHERICK L.: Handbook of Reactive Chemical Hazards

- react with metal halides and active metals, eg. sodium (Na), potassium (K), lithium (Li),calcium (Ca), zinc (Zn), powdered aluminium (Al) and aluminium alloys, magnesium (Mg) and magnesium alloys.
- may react with brass and steel.
- may react explosively with strong oxidisers
- may degrade rubber, and plastics such as methacrylate polymers, polyethylene and polystyrene, paint and coatings
- Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	1,1,1,2-tetrafluoroethane	1,1,1,2-Tetrafluoroethane	1000 ppm / 4240 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	IEEL-1	IEEL-2		TEEL-3
1,1,1,2-tetrafluoroethane	Not Available	Not Available		Not Available
Ingredient	Original IDLH		Revised IDLH	
1,1,1,2-tetrafluoroethane	Not Available		Not Available	

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection.

Provide adequate ventilation in warehouse or closed storage areas.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Speed:
aerosols, (released at low velocity into zone of active generation)	0.5-1 m/s
direct enray enray painting in shallow booths, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of Version No: 5.1

Electus Distribution NA1000 Electronic Freeze Spray

Issue Date: **15/04/2021**Print Date: **12/07/2022**

1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used Personal protection No special equipment for minor exposure i.e. when handling small quantities. OTHERWISE: For potentially moderate or heavy exposures: Eye and face protection Safety glasses with side shields ▶ NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them. Skin protection See Hand protection below ▶ No special equipment needed when handling small quantities. ► OTHERWISE: ► For potentially moderate exposures: Hands/feet protection Wear general protective gloves, eg. light weight rubber gloves. ► For potentially heavy exposures: ▶ Wear chemical protective gloves, eg. PVC. and safety footwear. See Other protection below **Body protection** No special equipment needed when handling small quantities. OTHERWISE: Overalls. Other protection Skin cleansing cream. Eyewash unit. Do not spray on hot surfaces.

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	Air-line*	AX-2	AX-PAPR-2 ^
up to 10 x ES	-	AX-3	-
10+ x ES	-	Air-line**	-

- * Continuous Flow; ** Continuous-flow or positive pressure demand
- ^ Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Clear, colourless liquefied gas with slight ethereal odour; does not mix with water.			
Physical state	Liquid	Liquid Relative density (Water = 1)		
Odour	Not Available	Partition coefficient n-octanol / water	1.21 Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available	
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available	
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available	
Initial boiling point and boiling range (°C)	-26	Molecular weight (g/mol)	Not Available	
Flash point (°C)	Not Applicable	Taste	Not Available	
Evaporation rate	Fast	Explosive properties	Not Available	
Flammability	Not Applicable	Oxidising properties	Not Available	
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available	
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	100	
Vapour pressure (kPa)	Not Applicable	Gas group	Not Available	
Solubility in water	Immiscible	pH as a solution (Not Available%)	Not Applicable	

Chemwatch: **22-0868** Page **6** of **10**

Version No: 5.1

Electus Distribution NA1000 Electronic Freeze Spray

Issue Date: **15/04/2021**Print Date: **12/07/2022**

 Vapour density (Air = 1)
 Not Available

 VOC g/L
 Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual

Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Common, generalised symptoms associated with toxic gas inhalation include:

- ▶ central nervous system effects such as depression, headache, confusion, dizziness, progressive stupor, coma and seizures;
- respiratory system complications may include acute pulmonary oedema, dyspnoea, stridor, tachypnoea, bronchospasm, wheezing and other reactive airway symptoms, and respiratory arrest;
- cardiovascular effects may include cardiovascular collapse, arrhythmias and cardiac arrest;
- gastrointestinal effects may also be present and may include mucous membrane irritation, nausea and vomiting (sometimes bloody), and abdominal pain.

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

WARNING:Intentional misuse by concentrating/inhaling contents may be lethal.

Exposure to high concentrations of fluorocarbons may produce cardiac arrhythmias or cardiac arrest due sensitisation of the heart to adrenalin or noradrenalin. Deaths associated with exposures to fluorocarbons (specifically halogenated aliphatics) have occurred in occupational settings and in inhalation of bronchodilator drugs.

Bronchospasm consistently occurs in human subjects inhaling fluorocarbons. At a measured concentration of 1700 ppm of one of the commercially available aerosols there is a biphasic change in ventilatory capacity, the first reduction occurring within a few minutes and the second delayed up to 30 minutes. Most subjects developed bradycardia (reduced pulse rate).

Bradycardia is encountered in dogs when administration is limited to upper respiratory tract (oropharyngeal and nasal areas). Cardiac arrhythmias can be experimentally induced in animals (species dependency is pronounced with dogs and monkeys requiring lesser amounts of fluorocarbon FC-11 than rats or mice). Sensitivity is increased by injection of adrenalin or cardiac ischaemia/necrosis or pulmonary thrombosis/bronchitis. The cardiotoxic effects of the fluorocarbons originate from irritation of the respiratory tract which in turn reflexively influences the heart rate (even prior to absorption of the fluorocarbon) followed by direct depression of the heart after absorption. Exposure to fluorocarbon thermal decomposition products may produce flu-like symptoms including chills, fever, weakness, muscular aches, headache, chest discomfort, sore throat and dry cough. Complete recovery usually occurs within 24 hours of exposure.

Acute intoxication by halogenated alighatic hydrocarbons appears to take place over two stages. Signs of a reversible narcosis are evident in the

Acute intoxication by halogenated aliphatic hydrocarbons appears to take place over two stages. Signs of a reversible narcosis are evident in the first stage and in the second stage signs of injury to organs may become evident, a single organ alone is (almost) never involved.

Ingestion

Overexposure is unlikely in this form.

Not normally a hazard due to physical form of product.

Considered an unlikely route of entry in commercial/industrial environments

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Skin Contact

Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Spray mist may produce discomfort

In common with other halogenated aliphatics, fluorocarbons may cause dermal problems due to a tendency to remove natural oils from the skin causing irritation and the development of dry, sensitive skin. They do not appear to be appreciably absorbed.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).

Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures..

Chemwatch: 22-0868 Page 7 of 10

Version No: 5.1

Electus Distribution NA1000 Electronic Freeze Spray

Issue Date: **15/04/2021**Print Date: **12/07/2022**

Princi

Chronic

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems

Principal route of occupational exposure to the gas is by inhalation.

It is generally accepted that the fluorocarbons are less toxic than the corresponding halogenated aliphatic based on chlorine. Repeated inhalation exposure to the fluorocarbon FC-11 does not produce pathologic lesions of the liver and other visceral organs in experimental animals. There has been conjecture in non-scientific publications that fluorocarbons may cause leukemia, cancer, sterility and birth defects; these have not been verified by current research. The high incidence of cancer, spontaneous abortion and congenital anomalies amongst hospital personnel, repeatedly exposed to fluorine-containing general anaesthetics, has caused some scientists to call for a lowering of the fluorocarbon exposure standard to 5 ppm since some are mutagens.

Electus Distribution NA1000 Electronic Freeze Spray	TOXICITY Not Available	IRRITATION Not Available	
1,1,1,2-tetrafluoroethane	TOXICITY Inhalation(Rat) LC50; 359453.102 ppm4h ^[2]	IRRITATION Not Available	
Legend:	Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless other specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

* with added oxygen - ZhongHao New Chemical Materials MSDS Excessive concentration can have a narcotic effect; inhalation of high concentrations of decomposition products can cause lung oedema.

Disinfection by products (DBPs) re formed when disinfectants such as chlorine, chloramine, and ozone react with organic and inorganic matter in water. The observations that some DBPs such as trihalomethanes (THMs), di-/trichloroacetic acids, and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) are carcinogenic in animal studies have raised public concern over the possible adverse health effects of DBPs. To date, several hundred DBPs have been identified.

1,1,1,2-TETRAFLUOROETHANE

Numerous haloalkanes and haloalkenes have been tested for carcinogenic and mutagenic activities. n general, the genotoxic potential is dependent on the nature, number, and position of halogen(s) and the molecular size of the compound. Short-chain monohalogenated (excluding fluorine) alkanes and alkenes are potential direct-acting alkylating agents, particularly if the halogen is at the terminal end of the carbon chain or at an allylic position. Dihalogenated alkanes are also potential alkylating or cross-linking agents (either directly or after GSH conjugation), particularly if they are vicinally substituted (e.g., 1,2-dihaloalkane) or substituted at the two terminal ends of a short to medium-size (e.g., 2-7) alkyl moiety (i.e., alpha, omega-dihaloalkane). Fully halogenated haloalkanes tend to act by free radical or nongenotoxic mechanisms (such as generating peroxisome-proliferative intermediates) or undergo reductive dehalogenation to yield haloalkenes that in turn could be activated to epoxides.

Haloalkenes are of concern because of potential to generate genotoxic intermediates after epoxidation. The concern for haloalkenes may be diminished if the double bond is internal or sterically hindered.

The cancer concern levels of the 14 haloalkanes and haloalkenes, have been rated based on available screening cancer bioassay (pulmonary adenoma assay) and genotoxicity data. Five brominated and iodinated methane and ethane derivatives are given a moderate rating. Beyond the fact that bromine and iodine are better leaving groups than chlorine, there is also evidence that brominated THMs may be preferentially activated by a theta-class glutathione S-transferase (GSTT1-1) to mutagens in Salmonella even at low substrate concentrations Furthermore, there are human carcinogenicity implications because of polymorphism in GSTT1-1. Human subpopulations with expressed GSTT1-1 may be at a greater risk to brominate THMs than humans who lack the gene.

Six, two, and one haloalkanes/ haloalkene(s) are given low-moderate, marginal, and low concern, respectively.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

X - Data either not available or does not fill the criteria for classification

🥓 – Data available to make classification

SECTION 12 Ecological information

Toxicity

The state Distribution NA 4000	Endpoint	Test Duration (hr)	Species	Value	Source
Electus Distribution NA1000 Electronic Freeze Spray	Not Available Not Available		Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	96h	Fish	300mg/l	Not Available
	EC50	72h	Algae or other aquatic plants	>114mg/l	2
1,1,1,2-tetrafluoroethane	LC50	96h	Fish	450mg/l	Not Available
	EC50	48h	Crustacea	980mg/l	Not Available
	EC50	96h	Algae or other aquatic plants	142mg/l	2

In addition to carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), the greenhouse gases mentioned in the Kyoto Protocol include synthetic substances that share the common feature of being highly persistent in the atmosphere and exhibiting very high specific radiative forcing (radiative forcing is the change in the balance between radiation coming

Chemwatch: 22-0868 Page 8 of 10

Version No: 5.1

Electus Distribution NA1000 Electronic Freeze Spray

Issue Date: **15/04/2021**Print Date: **12/07/2022**

into the atmosphere and radiation out; a positive radiative forcing tends on average to warm the surface of the earth). These synthetic substances include hydrocarbons that are partially fluorinated (HCFs) or totally fluorinated (PFCs) as well as sulfur hexafluoride (SF6).

The greenhouse potential of these substances, expressed as multiples of that of CO2, are within the range of 140 to 11,700 for HFCs, from 6500 to 9,200 for PFCs and 23,900 for SF6. Once emitted into the atmosphere, these substances have an impact on the environment for decades, centuries, or in certain instances, for thousands of years.

Many of these substances have only been commercialised for a few years, and still only contribute only a small percentage of those gases released to the atmosphere by humans (anthropogenic) which increase the greenhouse effect. However, a rapid increase can be seen in their consumption and emission, and therefore in their contribution to the anthropogenic increase in the greenhouse effect.

Since the adoption of the Kyoto Protocol, new fluorinated substances have appeared on the market, which are stable in air and have a high greenhouse potential; these include nitrogen trifluoride (NF3) and fluoroethers.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
1,1,1,2-tetrafluoroethane	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
1,1,1,2-tetrafluoroethane	LOW (LogKOW = 1.68)

Mobility in soil

Ingredient	Mobility
1,1,1,2-tetrafluoroethane	LOW (KOC = 96.63)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- Product / Packaging disposal Consult State Land Waste Manag
 - Consult State Land Waste Management Authority for disposal.
 - Discharge contents of damaged aerosol cans at an approved site.
 - Allow small quantities to evaporate.
 - DO NOT incinerate or puncture aerosol cans.
 - ▶ Bury residues and emptied aerosol cans at an approved site.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG)

UN number	1950		
UN proper shipping name	AEROSOLS		
Transport hazard class(es)	Class 2.2 Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions 63 190 277 327 344 381 Limited quantity 1000ml		

Air transport (ICAO-IATA / DGR)

UN number	1950		
UN proper shipping name	Aerosols, non-flammable		
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	2.2 Not Applicable 2L	
Packing group	Not Applicable		
Environmental hazard	Not Applicable		

Version No: **5.1**

Page 9 of 10 Electus Distribution NA1000 Electronic Freeze Spray

Issue Date: **15/04/2021**Print Date: **12/07/2022**

	Special provisions	A98 A145 A167 A802
	Cargo Only Packing Instructions	203
	Cargo Only Maximum Qty / Pack	150 kg
Special precautions for user	Passenger and Cargo Packing Instructions	203
	Passenger and Cargo Maximum Qty / Pack	75 kg
	Passenger and Cargo Limited Quantity Packing Instructions	Y203
	Passenger and Cargo Limited Maximum Qty / Pack	30 kg G

Sea transport (IMDG-Code / GGVSee)

UN number	1950		
UN proper shipping name	AEROSOLS		
Transport hazard class(es)	IMDG Class 2.2 IMDG Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number Special provisions Limited Quantities	F-D, S-U 63 190 277 327 344 381 959 1000 ml	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
1,1,1,2-tetrafluoroethane	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
1,1,1,2-tetrafluoroethane	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

1,1,1,2-tetrafluoroethane is found on the following regulatory lists

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 $\,$

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status			
Australia - AIIC / Australia Non-Industrial Use	Yes			
Canada - DSL	Yes			
Canada - NDSL	No (1,1,1,2-tetrafluoroethane)			
China - IECSC	Yes			
Europe - EINEC / ELINCS / NLP	Yes			
Japan - ENCS	Yes			
Korea - KECI	Yes			
New Zealand - NZIoC	Yes			
Philippines - PICCS	Yes			
USA - TSCA	Yes			
Taiwan - TCSI	Yes			
Mexico - INSQ	Yes			
Vietnam - NCI	Yes			
Russia - FBEPH	Yes			
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.			

SECTION 16 Other information

Revision Date	15/04/2021
Initial Date	25/01/2010

Chemwatch: 22-0868 Page 10 of 10 Issue Date: 15/04/2021

Version No: 5.1 Print Date: 12/07/2022 **Electus Distribution NA1000 Electronic Freeze Spray**

SDS Version Summary

Version	Date of Update	Sections Updated
4.1	24/01/2020	Ingredients, Physical Properties, Supplier Information
5.1	15/04/2021	Classification change due to full database hazard calculation/update.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.